Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

R. Hema, ${ }^{\text {a }}$ V. Parthasarathi, ${ }^{\text {a }}$ * K. Ravikumar, ${ }^{\text {b }}$ B. Sridhar ${ }^{\text {b }}$ and K Pandiarajan ${ }^{\text {c }}$

${ }^{\text {a }}$ School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, ${ }^{\text {b }}$ Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\text {c }}$ Department of Chemistry, Annamalai University, Annamalai Nagar 608 002, India

Correspondence e-mail: vpsarati@yahoo.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.042$
$w R$ factor $=0.113$
Data-to-parameter ratio $=12.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3,t-6-Dihydroxy-t-5-methoxycarbonyl-c-6-methyl-r-4-phenyl-4,5,6,7-tetrahydro1 H -indazole

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$, the cyclohexene ring adopts a half-chair conformation. In the solid state, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules into dimers. The crystal packing is further stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

1-(2,4-Dichlorobenzyl)-1 H -indazole-3-carbohydrazide is a potential reversible male contraceptive when administered orally to adult Sprague-Dawley rats (Cheng et al., 2005). Indazole derivatives have been extensively studied as bioactive compounds, exhibiting anti-aggregatory and vasorelaxant activity by NO release, anticancer effects, and antimicrobial and antiparasitic properties (Cerecetto et al., 2005). In view of these important attributes, a crystal structure determination of the title compound, (I), has been undertaken in order to investigate the structure-activity relationships of this class of compounds.

(I)

In (I), the cyclohexene ring adopts a half-chair conformation (Fig. 1), with puckering parameters (Cremer \& Pople, 1975) $Q=0.5374$ (17) A, $\theta=129.47(18)^{\circ}$ and $\varphi=265.8(2)^{\circ}$. Atoms C5 and C6 are displaced on opposite sides of the mean plane of atoms C4-C9 of the cyclohexene ring by 0.456 (3) and -0.361 (3) Å, respectively. This plane (C4/C7/C8/C9) makes dihedral angles of 72.85 (6) and 79.26 (9) ${ }^{\circ}$ with the phenyl ring and methoxycarbonyl group, respectively. The phenyl ring and the methoxycarbonyl group are substituted in the bisectional $\left[\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 13-\mathrm{C} 14=50.5(2)^{\circ}\right]$ and β-equatorial orientations $\left[\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10=163.57(14)^{\circ}\right.$ and $\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-$ $\left.\mathrm{C} 10=178.14(13)^{\circ}\right]$, respectively, relative to the six-membered ring. The methyl and hydroxy groups at C 6 are substituted in the α-equatorial $\left[\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 12=167.53(14)^{\circ}\right]$ and β axial orientations $\left[\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6-\mathrm{O} 61=-73.92(16)^{\circ}\right]$, respectively.

In the crystal structure of (I), atom O31 of the hydroxy group at C 3 forms an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen

Figure 1
A view of (I), showing the atom-labelling scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.

Figure 2
The crystal packing of (I), viewed along the a axis. Dashed lines indicate $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.
bond with atom N 2 of an adjacent molecule (Table 1). This interaction links the molecules into a dimer with a graph-set motif of $R_{2}^{2}(8)$ (Bernstein et al., 1995). Atom N1 acts as donor for an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction (Table 1) with hydroxy atom O61 (via atom H1) of a neigbouring molecule, to form a $C(6)$ chain motif. Atom O61 acts as donor for a symmetry-related molecule for intermolecular interaction with atom O31 to form a graph-set motif of $C(8)$. A weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (Desiraju, 1997) is also observed (Table 1). Atom C7 acts as a donor for such an
interaction with atom O31 of a neigbouring molecule to form a $C(7)$ chain motif. These intermolecular hydrogen bonds stabilize the crystal packing (Fig. 2).

Experimental

A mixture of methyl acetoacetate (100 mmol), benzaldehyde $(50 \mathrm{mmol})$ and methylamine $(50 \mathrm{mmol})$ in ethanol $(50 \mathrm{ml})$ was heated to boiling. The reaction mixture was kept overnight at room temperature. The separated solid was filtered and purified by recrystallization from ethanol. The product was found to be $r-2, c-4-$ bis(methoxycarbonyl)- c-5-hydroxy- $t-5$-methyl- $t-3$-phenylcyclohexanone, (II) (yield 85%, m.p. 444 K). The product, (II) (100 mmol), was dissolved in hot ethanol (25 ml) and, after addition of hydrazine hydrate (150 mmol), the reaction mixture was heated under reflux for 2 h . The hot solution was poured on to ice and the precipitate, (I), was filtered off by suction (yield 70%, m.p. 533 K) and was recrystallized from ethanol.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \\
& M_{r}=302.32 \\
& \text { Orthorhombic, Pbca } \\
& a=9.3871(4) \AA \\
& b=14.7295(6) \AA \\
& c=21.6478(9) \AA \\
& V=2993.2(2) \AA \\
& Z=8
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.342 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 9647 \\
& \quad \text { reflections } \\
& \theta=2.7-27.7^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=273(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.19 \times 0.11 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans
Absorption correction: none
26831 measured reflections
2632 independent reflections
2370 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-17 \rightarrow 17$
$l=-25 \rightarrow 25$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.113$
$S=1.05$
2632 reflections
207 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 . . 661 $^{\text {i }}$	0.82 (2)	2.11 (2)	2.9025 (18)	164.3 (18)
$\mathrm{O} 31-\mathrm{H} 31 \cdots \mathrm{~N} 2^{\text {ii }}$	0.82	1.85	2.6728 (18)	178
O61-H61 \cdots O31 ${ }^{\text {iii }}$	0.82	2.23	2.8758 (16)	136
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 3{ }^{\text {iv }}$	0.97	2.57	3.3679 (19)	140
O61-H61 \cdots O52	0.82	2.39	3.0065 (16)	132

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2},-z$; (ii) $-x+1,-y,-z$; (iii) $-x,-y,-z$; (iv) $-x+\frac{1}{2}, y+\frac{1}{2}, z$.

The methyl H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}=0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but were allowed to rotate freely about the $\mathrm{C}-\mathrm{C}$ bond. The hydroxy H atoms were constrained as riding, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. Atom H 1 was located in a difference Fourier map and its position was

organic papers

refined freely along with an isotropic displacement parameter. All remaining H atoms were placed in idealized positions, with $\mathrm{C}-\mathrm{H}=$ $0.93-0.98 \AA$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Version 1.64.05; Farrugia, 1999); software used to prepare material for publication: SHELXL97.

RH thanks the UGC, India, for the award of an FIP fellowship (2005-2007). RH also gratefully acknowledges the help rendered by K. Murugavel in the synthesis of the compound.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Cerecetto, H., Gerpe, A., Gonzalez, M., Aran, V. J. \& Ocarizi, C. O. (2005). Mini-rev. Med. Chem. 5, 869-878.
Cheng, C.-Y., Mruk, D., Silverstrini, B., Bonanomi, M., Wong, C.-H., Siu, M.-K., Lee, N.-P., Lui, W.-Y. \& Mo, M.-Y. (2005). Pub. Med. 72, 251-261.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Desiraju, G. R. (1997). Aspects of Crystallography in Molecular Biology, edited by S. Parthasarathy \& J. P. Glusker, pp. 219-223. New Delhi: New Age International Publishers.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

